Smt. A.A.A.Govt. PG College, Kalka

LESSON PLAN (Odd semester, 2020-21)

NAME: Dr. Indu & Mrs. Puneet

SUBJECT: Chemistry

Class & Paper	Month	Торіс
B.Sc - II (Inorganic Chemistry)	October	Chemistry of d-Block elements Definition of transition elements, position in the periodic table, General characteristic properties of d-Block elements, Comparison of properties of 3d elements with 4d and 5d elements with reference only to ionic radii, oxidation state, magnetic and spectral properties and stereo chemistry. Stability of various oxidation states and e.m.f (Latimer and Frost diagrams), Structure and properties of some compounds of transition elements- TiO ₂ , VOCl ₂ , FeCl ₃ , CuCl ₂ and Ni(CO) ₄ .
	November	 Coordination Compounds Werner's theory of coordination compounds, effective atomic number, chelates, nomenclature of coordination compounds, Isomerism in coordination compounds, valence bond theory of transition metal complexes. Non-aqueous solvents Physical properties of solvents, types of solvents and their general characteristics, reactions in non aqueous solvents with reference to liquid NH₃ and liquid SO₂.
B.Sc - II (Physical Chemistry)	October	Thermodynamics Definition of thermodynamic terms : system, surrounding etc. Types of systems, intensive and extensive properties. State and path functions and their differentials. Thermodynamic process. Thermodynamic equilibrium, Concept of heat and work. First law of thermodynamics: statement, concepts of internal energy and enthalpy. Heat capacity, heat capacities at constant volume and pressure and their relationship. Joule–Thomson coefficient for ideal gas and real ga s and inversion temperature. Calculation of w,q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process.
	November	Chemical Equilibrium Equilibrium constant and free energy, concept of chemic al potential, Thermodynamic derivation of law of chemical equilibrium. Tempe rature dependence of equilibrium constant. Clausius–Clapeyron equation and its applications. Distributioln Law Nernst distribution law – its thermodynamic derivation, Applications of distribution law: (i) Determination of degree of hydrolysis and hydrolysis constant of aniline hydrochloride (ii) Determination of equilibrium constant of potassium tri –iodide complex and (iii) Process of extraction. More stress on numerical problems.

B.Sc - II	August	Ultraviolet (UV) absorption spectroscopy
(Organic Chemistry)		Absorption laws (Beer-Lambert law), molar absorptivity, presentation and analysis of UV spectra, types of electronic
		transitions, effect of conjugation. Concept of chromophore and
		auxochrome. Bathochromic, hypsochromic, hyperchromic and
		hypochromic shifts. UV spectra of conjugated enes and enones
	September	Woodward- Fieser rules, calculation of Ama x of simple
		conjugated dienes and α , β -unsaturated ketones. Applications of UV Spectroscopy in structure elucidation of simple organic compounds.
	October	Alcohols
		Monohydric alcohols - nomenclature, methods of formation by reduction of aldehydes, ketones, carboxylic acids and esters. Hydrogen bonding. Acidic nature. Reactions of alcohols. Dihydric alcohols — nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)4 and HIO4] and pinacol-pinacolone rearrangement. Phenols
		Nomenclature, structure and bonding. Preparation of phenols, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols - electrophilic aromatic substitution, Mechanisms of Fries rearrangement, Claisen rearrangement, Reimer-Tiemann reaction, Kolbe's reaction and Schotten and Baumann reactions. Epoxides
		Synthesis of epoxides. Acid and base-catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of Grignard and organolithium reagents with epoxides.
	November	Carboxylic Acids & Acid Derivative s Nomenclature of Carboxylic acids, structure and bonding, physical properties, acidity of carboxylic acids, effects of substituents on acid strength. Preparation of carboxylic acids. Reactions of carboxylic acids. Hell-Volhard-Zelinsky reaction. Reduction of carboxylic acids. Mechanism of decarboxylation. Relative stability of acyl derivatives. Physical properties, interconversion of acid derivatives by nucleophilic acyl substitution. Mechanisms of esterification and hydrolysis (acidic and basic).

()	